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Abstract. A Monte Carlo computing procedure is presented for evaluating the set 
of parameters which characterize the superhyperhe interaction in electron-nuclear 
spin coupled systems. The method is illust5ated in the determination of the compo- 
nents T I I  and T l  of the interaction tensor T together with the linewidth AHp--p of 
each of the superhyperfine transitions present in the electron paramagnetic resonance 
spectrum given by a cubic Gd3+ centre in CaFz recorded at. room temperature. The 
diffeI.ent steps followed to simulate the ‘annealing’ of the system are described in 
detail together with the shortcuts proposed in order to minimize the computing time 
taken for the procedure to converge to the best set of parameters. This method is 
applicable even if no good estimates are available for the initial set of parameters 
as these are usually taken as zero. This modern approach to the complicated prob  
lem of fitting the superhyperfine structure to the theoretical expressions is shown to 
be the best alternative and even if it is time consuming it can be easily run on a 
microcomputer. 

1. Introduction 

The advantages of the Monte Carlo method using the Metropolis 111 algorithm for 
solving optimization problems which involve several inter-related and non-linear pa- 
rameters have been shown in many fields. In the case of the determination of the 
effective spin Hamiltonian parameters which best fit the electron paramagnetic reso- 
nance (EPR) fine-structure spectrum, there exist several computing procedures [a,  31 
which have attempted to systematize the search of these parameters. These proce- 
dures give good results but are rather demanding regarding the goodness of the initial 
parameters and the knowledge of the quantum levels that originate the transitions. 
The Monte Carlo method applied to this problem [4] avoided these requirements and 
led to very precise results. This procedure has been successfully applied to  fit the 
spectrum given by Gd3+ in sites with different symmetry, e.g. cubic and tetragonal in 
CaF, [4], and cubic and trigonal in BaFz [5]. 

In the more complicated electron-nuclear spin coupled system the existence of 
significant contributions from allowed and forbidden transitions gives a complex EPR 
spectrum formed by a very large number (typically a few hundreds) of closely spaced 
lines. For example, for a Gd3+ ion in the centre of a cube formed by eight F-,  
48 superhyperfine lines are possible in theory for each fine-structure line. However, 
these superhyperfine transitions can be grouped in a reduced number of combinations 
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by considering the number of equivalent Gd3+-F- pairs for a given orientation of 
the external magnetic field. Several attempts have been made at  finding the tensor 
components of the superhyperfine interaction by using the expressions deduced by 
Ranon and Hyde [6] for the resonant fields and the transition probabilities of the 
superhyperfine lines. Naehring [7] used this formalism to calculate the superhyperfine 
spectrum originated by a Gd3+ in a cubic site in CdF, using the values deduced 
from ENDOR experiments; he obtained a good visual agreement between the recorded 
lines and the calcuiated bar spectrum. Later on, attempts were mads in order to  
find precisely the components of the superhyperfine interaction tensor T, by varying 
its components and minimizing the intensity difference between the theoretical and 
experimental spectra [8,9]. Misra [lo] extended the least-squares fitting method to  
the solution of the hyperfine interaction. The success of this method is based on 
the goodness of the initial parameters from which the program will start  and on the 
correct identification of the unique pairs of eigenvalues that originate a transition 
for the various resonant magnetic field values. The hyperfine and superhyperfine 
splitting was also studied by Madrid ed a1 [11] for substitutional Mnz+ in PbF,. The 
theoretical intensities were calcrilated in the case where the nuclear Zeeman term in the 
Hamiltonian could be neglected. In this case the initial parameters that characterize 
these interactions could be estimated from the experimental splitting, and a computer 
fitting was then performed which gave a good visual agreement with the experimentai 
EPR lines recorded a t  room temperature and at  60 K. Recently, the Monte Carlo 
method has been successfully applied to  the hyperfine interaction when S = l / 2  and 
I = 1/2 by Heynderickx e t  al  1121. 

The rigorous fitting of the EPR data  when superhyperfine interactions are present 
has not yet been solved. In this work we propose a Monte Carlo procedure to perform 
the fitting of the EPH fine and superhyperfine line splittings and apply it to  Gd3+ in 
cubic sites in CaF, ( S  t= T / 2 ,  I” = l / 2 ) ~  It will be shown how the proposed method 
permits simultaneous fittings of the EPR lines obtained from different field orientations 
without the necessity of previous knowledge of the parameters we want to  fit or the 
labels of the quantum levels involved in any of the superhyperfine transitions. Ancrther 
merit of this method which simulates a ‘thermal annealing’ of the system, is that  
when the initial ‘temperature’ is sufficiently high, all the minima of the function are 
explored and as the ‘temperature’ decreases adiabatically it will choose the ahsolute 
one,whereas the usual least-square fittings might converge to  a local minimum if the 
starting parameters are far from the real ones. The formalism introduced previously 
[6 ,7 ]  will be followed and only the relations used in the program will be given here for 
the sake of brevity. 

2. Theory 

A substitutional trivalent gadolinium ion non-locally compensated in CaF, will be 
considered here. This centre has a cubic symmetry as the impurity is located in the 
centre of a cube of fluorine ions. The Gd3+-8F- system is described by the following 
spin Hamiltonian 

where the first term is the electronic isotropic Zeeman term. The fine-structure term, 
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Xcf, describes the crystal field interaction, which can be written as 

1,m 

where the Olm are the Steven's operators with m 5 1. The last term, RI,  describes the 
superhyperfine interaction of the Gd3+ electron spin, Se ,  with each of the nuclear spins 
IF, of the eight nearest fluorine ions, together with the nuclear Zeeman interaction. 
In our case Se = 7/2, IF = 1/2 and k varies from 1 to 8 if only the first shell of 
neighbours is considered. XI can then be written as 

8 

k = l  
c.) 

where yg is the nuclear gyromagnetic ratio and T, is the superhyperfine interaction 
tensor which can be taken as diagonal when the reference system is chosen in such 
a way that the z axis is parallel t o  the direction joining the Gd3+_with the kth 
nearest fluorine, that  is a (111) direction. For this particular pair T, is diagonal 
with components T,, , parallel and TL,  perpendicular to the z axis. For all the other 
directions of the bonding axis @d3+-Fi  the tensor T k  will not be diagonal and its 
components can be expressed as functions of 7 TL and 8, which is the angle formed 
by the z axis and the cube diagonal that  joins the kth interacting pair. The  number 
of different values of ek which characterize the eight fluorine anions can generally 
be reduced by symmetry considerations. For any orientation of the z axis (always 
taken in the direction of H ) ,  four different values of 8 ,  are required. Three, two and 
one different values of 8, are necessary for H in the [I l l] ,  [110] and [loo] directions, 
respectively [8]. 

In order t o  diagonalize XI the eigenfunctions of the predominant electronic Zeeman 
term are chosen as the electronic basis set. Each term in the sum indicated in (3) 
can be treated independently since there are no matrix elements relating the different 
fluorine nuclear spins. The diagonalization of this Hamiltonian leads to  the resonance 
condition for a microwave frequency v, expressed as 

CI 

h v = A E F S ( H , M , M +  l ) + x [ p i A ' j ( M +  1)-pjI<j(M)] (4) 
j 

where AEFs is the difference in energies between the M and M + 1 levels of the fine 
structure obtained by the diagonalization of the first two terms of the Hamiltonian 
given by (1). The second term in (4) is the perturbation caused by XI to  the fine- 
structure levels. The sum in (4) extends over j which is the number of different Ok 
that  are necessary to  describe the 8 fluorines, and is 5 4. p j  is the sum of the nuclear 
spin quantum numbers, m:, taken over x j  which is the number of equivalent fluorines 
which have the same 8, and is 

*I 

pj = Emf 
i = l  

Kj ( M )  is defined by 

(5) 
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The  relative intensity of each superhyperfine resonance line is a function of the 
probability, r j  = c0s2(cj/2), for allowed nuclear transitions (Amy=O) and of the 
probability qj  = sin2(cj/2), for the forbidden nuclear transitions (Amy = kl), where 
cj  is given by 

(7) 
P ( M  + 1)P(M) COS' 0, + Q ( M  + I ) Q ( M )  sin2 ej 

K j ( M  + l)Kj(M) 
COS€.  = 3 

If bj is the number of fluorine nuclear spins that change their states from mr = 
-1/2 to m:F = +1/2, the relative intensities of the superhyperfine transition can be 
expressed following the argumentation given by Naehring [7] as 

with 

3. Monte Carlo procedure 

The simulated annealing method [1,4] will be used in order to find the values of 
the parameters Pj that  best reproduce the experimental spectra arising from the 
superhyperfine interaction. This procedure will be illustrated in the case of a cubic 
Gd3+ centre in a CaFz crystal a t  roLm temperature. The parameters Pj which we 
fit are the components TI, and TL of T, the peak to  peak width, AHpwp, of the first 
derivative of the lineshape that  we assume is described by a Lorentzian distribution 
and that is common to all the superhyperfine lines, and the normalization constants 
CA for each of the fine-structure lines included. The number of these fine-structure 
lines, A,,,,, considered for the fitting can vary from one up to  the maximum number 
available. 

One of the merits of the Monte Carlo method is its ability to  explore all the different 
choices available t o  the system subject to  a set of pre-defined conditions. For instance, 
for a given set of the parameters TI, and T', the resonant fields of the superhyperfine 
transitions between any two fine levels are calculated by using (4). The procedure 
then evaluates the resulting intensity for each fine line by summing up the relative 
weights of all the superhyperfine transitions which contribute effectively to  it.  The 
superhyperfine quantum levels of the transitions to be considered can change when the 
program explores different values of the parameters. In the present case, the program 
calculates the intensities of all the possible transitions between every combination of 
initial and final quantum states formed by the superhyperfine splitting of the fine 
levels considered. As this task can be very time consuming, much care has been taken 
in order t o  perform the calculations with maximum efficiency. For example, the lines 
whose intensity is lower than a threshold value I ,  are excluded from the calculations 
of the resonant fields. These weak lines were later taken into account in a final check 
in order t o  assure that  the addition of such transitions did not modify the results. 
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The Monte Carlo procedure minimizes the ‘energy’ Q defined by 

where X identifies which one of the fine-structure resonant lines is considered and nA is 
the number of experimental points in that line. Moreover, the different resonant lines 
might be chosen from the spectra obtained with different field orientations. I i x p , i ( H i )  
are the recorded intensities for the chosen lines while &(Hi)  are the corresponding 
calculated values of the intensity, both as a function of the external magnetic field. 

The calculation of Ica1,JHi) is performed in two stages. First, the fine-structure 
problem is solved by using a similar Monte Carlo procedure [4]; the crystal field 
parameters found there (b: = -46.63 x l ow4  cm-l, b: = -0.0904 x cm-l,  
g = 1.9920) are used to calculate the variation of the energy eigenvalues as a function 
of the applied field. This variation of the energy with magnetic field is calculated for all 
the initial, M ,  and final, M’,  states involved in each of the fine-structure lines for which 
the superhyperfine structure is later desired. Secondly, the superhyperfine interaction 
described by the Hamiltonian given by expression (3) is included to generate the 
superhyperfine structure and the Monte Carlo procedure proposed here will determine 
the values of the set of parameters Pj defined above which best fit the experimental 
data. The outline of the general procedure is given in the flow diagram shown in 
figure 1. The simulated annealing described in detail in a previous work [4], needs 
an initial ‘temperature’ T ,  such that the ratio Q/T reaches a value close to unity 
after a few Monte Carlo steps (MCS). The main considerations for implementing this 
procedure are, according to the flow diagram, as follows. 

(i) For each of the A,,, fine-structure lines considered, the initial and final elec- 
tronic spin quantum numbers, M and M’,  are read. For each of these fine-structure 
transitions, the variation of the energy of the quantum levels involved with magnetic 
field is obtained by the exact diagonalization of the Zeeman term and the crystal field 
Hamiltonian, i.e. the first two terms of the spin Hamiltonian of (1). The span of the 
field considered, around the centre of each line, is k25 G with a field step of 1 G. 
With the obtained values continuous functions E,(H) and E,,(H) are constructed 
by best-fitting those points to quadratic or linear forms. These functions were then 
used as input to  the superhyperfine Monte Carlo procedure to calculate precisely the 
transition fields due to the superhyperfine perturbation as shown in the input box of 
figure 1. In this way, the fact that the different superhyperfine transitions lines do not 
occur at  the field corresponding to the centre of each of the fine-structure resonance 
lines is taken into account. No information is needed regarding either the resonant 
fields of the superhyperfine structure or the nuclear quantum numbers of the levels 
involved in those transitions. The initial and final states for each superhyperfine tran- 
sition that contributes to the intensity is determined as necessary by the procedure. 
The allowed as well as the forbidden superhyperfine transitions were permitted to 
occur. 

Also, the klystron frequency v, the initial values of Pj as well as their initial 
increments are given. The set of parameters to be fitted are the two components 
TI, and T,, AH,-, and the normalization factors CA. The initial increments of the 
parameters can be set arbitrarily to  any non-zero value as they are self adjusting. If 
these increments are such that the resulting AQ/T is far from unity, then several Monte 
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INPUT 
- Read v ,  fine structure data: number of lines included (A,,,), 

M ,  A!', E M ( H ) ,  E M , ( H )  and field directions 
- Read I , ,  nx, A = 1 , .  . . ,A,,,, I&, , ,  i = 1,. . . ,nx 
- Read Monte Carlo values: MCS, initial values of T and AT 
- Read initial values of P, and AP, 

Calculate F ( z j ,  6 j , p i , p , )  
Set initial value of 

Calculation of superhyperfine 
intensities and resonant fields. 

(See Fig. 2)  

1 

Perform Monte Carlo decision. 

Procedure 
(See Fig. 3)  

Accept Pj ? 

YES 
r r 1 I Check and adjust APj j -+ j + 1 1 

Annealing Step: T T - AT 

1 
NO 

YES 1 
OUTPUT 

( P j )  f AP, and (a) f A@ 

Figure 1. Flow chart representing the Monte Carlo computational procedure for 
determining the superhyperfine interaction Hamiltonian parameters that best fit the 
EPR data. 
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Carlo steps will be needed to adjust them to the proper values. The experimental 
recorded intensity IeX,+(Hi)  is also provided with a density of three points per gauss. 

The number of Monte Carlo’ steps per ‘annealing temperature’, the initial ‘tem- 
perature’ and how many intervals each ‘temperature’ decade is divided into are also 
read. 

(ii) For each direction of the magnetic field H the values of F ( z j ,  Sj ,p : ,  p j )  are 
calculated only once and stored in an array for later use. 

Pj ? 

Calculate transition 
probabilities: r,, qi 

Calculate 

Calculate resonant 
fields for lines 

with I > I ,  

Calculate I&,, VX,  ( i  = I , .  . Calculate 
i = l ,  . . . ,  nx 

Figure 2. Flow chart used in the calculation of the relative intensities and the 
resonant fields of the superhypehe allowed and forbidden EPR transitions. The 
procedure first adjusts Til and T i ,  then AHp-p and finally Ca. 

(iii) Every time the parameters TII and Tl are changed by the program, the tran- 
sition probabilities q j ,  r j ,  the relative intensities I ( p l ,  p 2 ’ .  . . ; p i ,  p i l .  . .) and the reso- 
nant fields are recalculated according to the scheme shown in figure 2. The transition 
probabilities q j  and rj  are calculated at  the fields corresponding to the centre of the 
fine-structure resonant lines to which they are associated. These values are not too 
sensitive to  the fact that all the superhyperfine transitions do not occur at  the centre- 
field value of the fine-structure line. This approximation reduces considerably the 
computing time involved in the calculation of the lines intensity and the error made 
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by this assumption was checked to  be lower than 0.3%. Additionally, only the transi- 
tions whose relative weights are greater than a threshold value I,, chosen here as 0.2% 
of the height of the most intense superhyperfine component are included. The omis- 
sion of these terms results in a total intensity change of less than 1% but also reduces 
the computing time drastically. The resonant field obtained by means of equation (4) 
are recalculated only for the superhyperfine transitions whose intensities are above I,. 

Each fine-structure line is made of a large number of superhyperfine transitions. 
The number, quantum levels and resonant fields of these superhyperfine transitions 
that contribute to  the intensity of the fine line, varied appreciably within the range of 
values randomly assigned by the Monte Carlo procedure to  TII and TL. The discrete 
variation of the number and positions of the resonant superhyperfine lines taken into 
account makes the function to  fit discontinuous. Some of the peculiarities of this 
particular Monte Carlo procedure are due to this unusual behaviour. A small change 
in one of the tensor parameters, near one of these discontinuities may lead to  an energy 
difference A@ higher than expected. 

Another consideration related to  the fact described above is illustrated by the 
following example. If a new value of a parameter is explored in the vicinity of a 
discontinuity, which leads to  a much higher value of the energy @, the probability 
of accepting this new value is very low. However, upon rejection of the involved 
parameter, the function remains with the internal structure resulting from the last 
calculation and the old value of @ is not re-established by setting the increment of the 
parameter to  zero. For this reason, some extra time is needed to  re-establish some of 
the essential features of the function to  ensure that A@ = 0 as the parameter recovers 
its previous value. The way the re-esta.blishment is done is described in the diagram 
of figure 3 and also carried out in the most efficient possible way. Only the part of 
the function affected by the most recent changes is re-established. The order in which 
the parameters Pj are changed in figures 2 and 3 is first TI, and TL,  then AH,-, and 
last the normalization constant CA. 

(iv) For each possible superhyperfine transition calculated, a first derivative of a 
Lorentzian lineshape is associated to  it.  The relative intensity of each superhyperfine 
transition is given by I ( p l ,  p 2 , .  . . ; p i ,  p i , ,  . .). The width of each line, AHp-, is the 
same for all the transitions considered and is a global parameter of the fitting. The 
total resonant spectra was then obtained by adding all the contributions from all 
the superhyperfine transitions associated with each fine-structure line. The calculated 
total intensity of the superhyperfine structure is then compared with the experimental 
data to  obtain the value @ defined in equation (10). 

Is to  be noted that the experimental intensities of each line introduced as data  to  
the Monte Carlo procedure for the minimization of @ were normalized to  the same 
maximum intensity. This was done in order to  ensure that all the lines included were 
weighted equally in the fitting procedure as they all are of the same good quality. 

4. Experiments and results 

The experiments were carried out a t  room temperature in a Varian spectrometer in 
the X-band frequency range (U = 9.51 GHz). The samples used in this work were CaF, 
bought from Optovac Inc. as ‘pure’ single crystals. The accidental impurity content 
was estimated to  be of 3 x lo-’ in molar fraction for Gd3+ and traces of Mn2+. The 
sample was cleaved to  a size of approximately 1 mm x 1 mm x 6 mm and was aligned 
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Re-establish old values of 
‘h,i 

VX, ( i  = 1 , .  . . , nA) 
4 

Figure 3. Procedure for the re-establishment of the relative intensities and resonant 
fields for the superhyperfine transitions to their previous values when the current 
parameters are rejected. 

in the spectrometer cavity with a [110] axis vertical. With this set-up the external 
field can be parallel to  either the [OOl ] ,  the [lll] or the [110] crystalline direction. The 
data  acquisition system consists of a Hewlett Packard scanner-voltmeter controlled 
by an IBM PC-AT t o  record in digital form the EPR signal against the applied field. 
This digital signal was then used by the Monte Carlo procedure which fitted these 
data  t o  the theoretical predictions. Each fine-structure line was stored in a file for 
latter use with a density of three points per gauss and a total field span of 50 G.  The 
conversion of the field scale from volts to  gauss was done during a very slow sweep 
of each line by constantly monitoring the magnetic field value with a Sentec nuclear 
magnetic resonance probe. The six experimental lines corresponding to  Gd3+ in cubic 
sites recorded a t  room temperature shown in figure 4 (dotted curve) for W in the [ill] 
direction were used for the fitting. This choice was motivated by the fact that the 
[lll] direction presents the best resolution of the superhyperfine splitting and that 
the inclusion of more lines would result in an unnecessary longer computing time for 
an already time consuming problem. The central line, not shown here, was not used 
for the fitting due t o  its overlapping with a weaker signal due to  Mn2+ ions which 
distorted the profile of the Gd3+ line. 

The Monte Carlo minimization procedure was started with the following initial 
values, TI, =0, TA =O and AHp-p = 2 G. The initial ‘temperature’ used was high 
enough so that  the value of @IT was of the order of unity after a few iterations. The 
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Figure 4. Comparison of the experimental EPR signal (dotted curve) with H 1 1  [111] 
recorded at room temperature with the theoretical spectrum (full curve) generated 
with the parameters that gave the best fit with the Monte Carlo procedure (see 
table 1). 

initial values of the increments for TI, and TL were set equal to cm-l and for 
AHp-p, 0.1 G. The  number of MCS was set equal to  50. The rest of the parameters were 
the six normalization constants all set equal to  unity and their initial increments were 
all equal to  0.1. The maximum intensity for each of the fine-structure lines included 
was normalized t o  the value corresponding to  the most intense line included. This 
normalization was done automatically in the Monte Carlo minimization procedure. 
Each ‘temperature’ decade was divided into five equal steps. For each ‘temperature’, 
the mean values and the standard deviations for all the parameters and for the ‘energy’ 
@ were calculated. 

In figure 4 the resulting spectrum calculated with the best parameters found by 
the Monte Carlo procedure is shown (full curve) and compared to the corresponding 
experimental lines plotted as a dotted curve on this same figure. One can conclude 
that overall excellent agreement between the two signals exists. When the spectra 
with H parallel t o  the [loo] and the [110] directions were generated with this same 
set of parameters, the observed agreement was slightly worse but of the same overall 
quality provided that the Mn2+ hyperfine lines did not interfere with the gadolinium 
spectrum. 

In table 1 a summary of our results together with other results found in the 
literature are reported for this same cubic centre. Sook Lee ei a /  [9] results were 
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Table 1. CaFz:Gd”S, cubic site, superhyperfine interaction parameters. 

TI1 TL AJ4-J-v Reference 
(IO-* an-:) (lo-* cm-l) (G)  

2.75 f 0 . 0 2  -2.29 f 0.01 - [I 31’ 
2.70 f 0.07 -2.37 f 0.07 2.3 [91 
2.925 P. 0.003 -2.459 f 0.003 2.616 f O.OCi5 (This work)c 

a ENDOR data taken at 8 K. 
EPR data taken at 77 K,  Gaussian lineshapes. 
EPR data taken at 300 K, Lorentzian lineshapes. 

obtained by starting from the ENDOR data  of Bill [13], also reported on table 1. 
With these initial values they were able to correlate each experimental superhyperfine 
line with one or more specific theoret,ical superhyperfine transitions. Based on the 
knowledge of this correlation, the values of 7‘11 and TL as well as the Gaussian linewidth 
were adjusted until the theoretical spectra gave the best fit to  the data  which were 
recorded a t  77 K. The advantage of the Monte Carlo procedure proposed here is that  
the result was reached without any previous knowledge on the parameters values or 
on the specific superhyperfine transitions which contribute tmo the spectrum. Also, the 
errors on the parameters were found to  be smaller than any previous determination. 
They were calculated from the mean values obtained for the corresponding parameter 
a t  the lowest ‘temperature’ reached here and consistent with the minirriiim value of 
the function @ following the procedure previously discussed by us [4]. 

I t  is t o  be noted that our results for TI, and TL were obtained by using a Loreritzian 
lineshape centred a t  each superhyperfine-line resonant field. Attempts were also made 
t o  fit the same data  using a Gaussian distribution rather than a Lorentzian in order 
to  make a straightforward comparison with the results of Sook Lee e l  a1 [9]. First, 
we used the same parameters obtained for the superhyperfine tensor in the case of 
the Lorentzian distribution and fitted the AHp-p for the Gaussian linewidth together 
with the normalization factors for each fine-structure line. This procedure gave a 
value of the ‘energy’ @, a measure of the goodness of the overall fit,ting, 4.8 t.: irnes 
larger than the one found for the Lorenteian distribution. Then we restarted tjhe 
Monte Carlo procedure, and the value of the resulting superhyperfine tensor parame- 
ters were slightly different (within 15%) from those calculated before but the ‘energy’ 
was still a factor of 3.9 times larger than in  the Lorentzian case. The  inability for the 
Gaussian lineshape to  fit our results adequately is attributed to  the impossibility of 
this distribution describing the long tails which are part of our signal. As the mini- 
mization of the ‘energy’ @ entails the search for the best global agreement between the 
envelope of the calculated intensity of the resonant lines and the experimental data,  
the procedure tends to  choose those parameters that reproduce the tails of the curves 
whose weights are important in the evaluation of Cp. When using Gaussian lineshapes 
which go to  zero too rapidly the automatic minimization of Cp does not lead to  the 
best set of parameters. 

A Monte Carlo procedure to  find precisely the superhyperfine interaction constants 
in electron-nuclear spin coupled systems from the structure observed in EPR. fine- 
structure lines has been proposed. The program sums up the contributions of all 
the forbidden and allowed transitions with intensities higher than a threshold value, 
for each combination of the parameters that  i t  explores. Thus,  no information on 
the quantum states that  are involved in each transition is needed. Also, no previous 
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knowledge of the parameters is required in order to  start with a good set of initial 
parameters, as the program usually starts with null initial values. The program, which 
runs on an IBM-AT personal computer with numerical co-processor, included many 
short cuts in order t o  reduce the computing time. The whole procedure took around 
eighty hours if we started from very high ‘temperature’ and with six fine-structure lines 
included. This procedure has been shown t o  work remarkably well in the case of the 
Gd3+ cubic site in CaF,. We have found good agreement with the previous calculated 
values of the superhyperfine tensor parameters although the lineshapes we used were 
not Gaussian but Lorentzian. In our case the Gaussian lineshape was inadequate to  
properly fit the signals obtained for a cubic Gd3+ molar concentration of 3 x 
However, with the Lorentzian distribution there were some fine details in the tail 
of the signal that  were not exactly reproduced even if there were some transitions 
occurring a t  these fields. This fact tells us that a better fit would still be obtained if 
the lineshape, instead of being purely Lorentzian, fell of€ a little faster in the wings. 
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